- 1. Let f and g be differentiable functions with the following properties:
 - (i) g(x) > 0 for all x
 - (ii) f(0) = 1

If h(x) = f(x)g(x) and f'(x) = f(x)g'(x), then f(x) =

- (A) f'(x) (B) g(x) (C) e^x (D) 0

- 2. The flow of oil, in barrels per hour, through a pipeline on July 9 is given by the graph shown at right. Of the following, which best approximates the total number of barrels of oil that passed through the pipeline that day?

- (B) 600
- (C) 2,400
- (D) 3,000
- (E)4,800

- 3. What is the instantaneous rate of change at x = 2 of the function f given by $f(x) = \frac{x^2 2}{x 1}$?
 - (A) -2 (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) 2

- (E) 6
- 4. If f is a linear function and 0 < a < b, then $\int_a^b f''(x) dx =$ $(A) 0 \qquad (B) 1 \qquad (C) \frac{ab}{2} \qquad (D) b a \qquad (E) \frac{b^2 a^2}{2}$

- 5. If $F(x) = \int_{0}^{x} \sqrt{t^3 + 1} dt$, then F'(2) =(A) -3 (B) -2 (C) 2 (D) 3

- (E) 18

- 6. If $f(x) = \sin(e^{-x})$, then f'(x) =

- (A) $-\cos(e^{-x})$ (B) $\cos(e^{-x}) + e^{-x}$ (C) $\cos(e^{-x}) e^{-x}$ (D) $e^{-x}\cos(e^{-x})$ (E) $-e^{-x}\cos(e^{-x})$
- 7. If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x =
 - (A) -1 only (B) 2 only
- (C) -1 and 0 only
- (D) -1 and 2 only (E) -1, 0, and 2 only
- 8. What are all the values of k for which $\int_{a}^{k} x^2 dx = 0$?
 - (A) -3 (B) 0 (C) 3

- (D) -3 and 3 (E) -3, 0, and 3

9. The averag	e value of t	he functio	n f(x)	= 2e ^{(x-}	-3) on t	he inte	rval [1,6] is		
	(A) $\frac{e^3}{3}$	(B) $2e^3$	$-2e^{-2}$	(C)	$\frac{e^3}{3}$ $-\frac{e}{3}$	$\frac{e^2}{3}$ (1	D) $e^3 + e^{-5}$	(E) $\frac{2e^3}{5}$	$-\frac{2e^{-2}}{5}$
10. A rectangle $y = 3 - 4x^2$							-	itive portic	on of the
	(A)	$\frac{3\sqrt{6}}{4}$	(B) $\frac{3}{}$	$\frac{\sqrt{15}}{5}$	(C)	$\frac{3\sqrt{15}}{10}$	(D) 2	(E) $\frac{3}{2}$	3 2
dv									

parabola

11.	If $\frac{dy}{dx} = y$ se	· t				
	•	(A) $e^{\tan x} + 4$	(B) $e^{\tan x} + 5$	(C) 5e ^{tan x}	(D) $\tan x + 5$	(E) $\tan x + 5e^{3}$

12. (Calculator Permitted) The average value of the function $f(x) = e^{-x^2}$ on the closed interval [-1,1] is (B) 0.75(C) 0.80(D) 0.85 (A) 0.70

13. If $\frac{dy}{dx} = \frac{1}{x}$, then the average rate of change of y with respect to x on the closed interval [1,4] is

(A)
$$-\frac{1}{4}$$
 (B) $\frac{1}{2}\ln 2$ (C) $\frac{2}{3}\ln 2$ (D) $\frac{2}{5}$ (E) 2

(A)
$$e^{-\frac{1}{e}}$$
 (B) $e^2 - e$ (C) $\frac{e^2}{2} - e + \frac{1}{2}$ (D) $e^2 - 2$ (E) $\frac{e^2}{2} - \frac{3}{2}$

$$f(x) = \begin{cases} cx + d & \text{for } x \le 2\\ x^2 - cx & \text{for } x > 2 \end{cases}$$

Let f be the function defined above, where c and and d are constants. If f is differentiable at x = 2, what is the value of c+d?

(A) -4 (B) -2 (C) 0 (D) 2

16. Determine the y-intercept of the tangent line to the curve $y = \sqrt{x^2 + 24}$ at x = 5.

(B) $-\frac{72}{49}$ (C) $\frac{48}{49}$ (D) $\frac{44}{7}$ (E) $\frac{88}{49}$ (A) $\frac{24}{7}$

17. Let f be a twice differentiable function such that f(1) = 2 and f(3) = 7. Which of the following must be true for the function f on the interval $1 \le x \le 3$?

The average rate of change of f is $\frac{5}{2}$.

II. The average value of f is $\frac{9}{2}$.

III. The average value of f' is $\frac{3}{2}$.

(C) III only (A) None (B) I only (D) I and III only (E) II and III only

x	0	0.5	1.0	1.5	2.0
f(x)	3	3	5	8	13

18.

A table of values for a continuous function f is shown above. If four equal subintervals of [0,2] are used,

which of the following is the trapezoidal approximation of $\int f(x)dx$?

- (A) 8
- (B) 12
- (C) 16
- (D) 24
- (E) 32

§ 9. When the region enclosed by graphs of y = x and $y = 4x - x^2$ is revolved about the y-axis, the volume of the solid generated is given by

- (A) $\pi \int_{0}^{3} (x^{3} 3x^{2}) dx$ (B) $\pi \int_{0}^{3} (x^{2} (4x x^{2})^{2}) dx$ (C) $\pi \int_{0}^{3} (3x x^{2})^{2} dx$

 - (D) $2\pi \int_{1}^{3} (x^3 3x^2) dx$ (E) $2\pi \int_{1}^{3} (3x^2 x^3) dx$

20. (Calculator Permitted) Let $F(x) = \cos(2x) + e^{-x}$. For what value of x on the interval [0,3] will F have the same instantaneous rate of change as the average rate of change of F over the interval? (E) 1.814

- (A) 1.542
- (B) 1.610
- (C) 1.678
- (D) 1.746

Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f at x = 3 is used to find an approximation to a zero of f, that approximation is

- (A) 0.4
- (B) 0.5
- (C) 2.6
- (D) 3.4

22-

(Calculator Permitted) If $f'(x) = \frac{x^2}{1+x^5}$ and f(1) = 3, then f(4) =

- (A) 2.988
- (B)3
- (C) 3.016
- (E) 3.629

23. The base of a solid is the region in the first quadrant enclosed by the graphs of y = 2 - x and the coordinate axes. If every cross section of the solid perpendicular to the y-axis is a square, the volume of the solid is

- (A) $\pi \int_{0}^{2} (2-y)^{2} dy$ (B) $\int_{0}^{2} (2-y)^{2} dy$ (C) $\pi \int_{0}^{\sqrt{2}} (2-x^{2})^{2} dx$ (D) $\int_{0}^{\sqrt{2}} (2-x^{2})^{2} dx$ (E) $\int_{0}^{\sqrt{2}} (2-x^{2}) dx$

 $2 = \lim_{h \to 0} \frac{3\left(\frac{1}{2} + h\right)^5 - 3\left(\frac{1}{2}\right)^5}{h} =$

- (A) 0 (B) 1 (C) $\frac{15}{16}$

- (D) the limit does not exist
- (E) the limit cannot be determined